All-derivable points in the algebra of all upper triangular matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra

In this paper, we discuss some properties of joint spectral {radius(jsr)} and  generalized spectral radius(gsr)  for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but  some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...

متن کامل

Non-additive Lie centralizer of infinite strictly upper triangular matrices

‎Let $mathcal{F}$ be an field of zero characteristic and $N_{infty‎}(‎mathcal{F})$ be the algebra of infinite strictly upper triangular‎ ‎matrices with entries in $mathcal{F}$‎, ‎and $f:N_{infty}(mathcal{F}‎)rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $‎N_{infty }(mathcal{F})$; that is‎, ‎a map satisfying that $f([X,Y])=[f(X),Y]$‎ ‎for all $X,Yin N_{infty}(mathcal{F})...

متن کامل

cocharacters of upper triangular matrices

we survey some recent results on cocharacters of upper triangular matrices. in particular, we deal both with ordinary and graded cocharacter sequence; we list the principal combinatorial results; we show di erent tech-niques in order to solve similar problems.

متن کامل

Mining All Non-derivable Frequent Itemsets

Recent studies on frequent itemset mining algorithms resulted in significant performance improvements. However, if the minimal support threshold is set too low, or the data is highly correlated, the number of frequent itemsets itself can be prohibitively large. To overcome this problem, recently several proposals have been made to construct a concise representation of the frequent itemsets, ins...

متن کامل

The computation of abelian subalgebras in the Lie algebra of upper-triangular matrices

This paper deals with the computation of abelian subalgebras of the solvable Lie algebra hn, of n × n upper-triangular matrices. Firstly, we construct an algorithm to find abelian Lie subalgebras in a given Lie algebra hn. This algorithm allows us to compute an abelian subalgebra up to a certain dimension. Such a dimension is proved to be equal to the maximum for abelian subalgebras of hn.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2008

ISSN: 0024-3795

DOI: 10.1016/j.laa.2008.04.010